Binomial to Poisson Distribution¶
Given that \(n\) is the number of Bernoulli trials and \(p\) is the probability of success, we have:
\[
P(\mathbf{X} = 1) = p \\
P(\mathbf{X} = 0) = q = 1 - p
\]
If \(n \to \infty\), \(p \to 0\), and \(n \cdot p\) or \(n \cdot q\) remains constant, the distribution approaches the Poisson Distribution.
\[
\mathbf{X} \sim \text{Binomial}(n, p) \rightarrow \mathbf{X} \sim \text{Poisson}(\lambda)
\]
where \(\lambda = n \cdot p\) is the parameter for the Poisson Distribution.
Let \(\lambda = np\), \(p = \frac{\lambda}{n}\), and \(\mathbf{X} \sim \text{Binomial}(n, p)\).
\[
\begin{align*}
P(\mathbf{X} = k) &= \binom{n}{k} p^k (1 - p)^{n - k} \\
&= \frac{n!}{k!(n - k)!} \left( \frac{\lambda}{n} \right)^k \left( 1 - \frac{\lambda}{n} \right)^{n - k} \\
&= \frac{\lambda^k}{k!} \frac{n!}{(n - k)!} \left( \frac{\lambda}{n} \right)^k \left( 1 - \frac{\lambda}{n} \right)^{n - k} \\
&= \frac{\lambda^k}{k!} \frac{n(n - 1)(n - 2) \cdots (n - k + 1)}{n^k} \left( 1 - \frac{\lambda}{n} \right)^{n - k}
\end{align*}
\]
As \(n\) approaches a large number of trials, \(n \to \infty\), we have:
\[
\lim_{n \to \infty} \left( 1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}
\]
\[
\lim_{n \to \infty} \left( 1 - \frac{1}{n} \right) \left( 1 - \frac{2}{n} \right) \cdots \left( 1 - \frac{k + 1}{n} \right) = 1
\]
\[
\lim_{n \to \infty} \left( 1 - \frac{\lambda}{n} \right)^{-k} = 1
\]
Thus, we obtain the Poisson distribution:
\[
P(\mathbf{X} = k) = \frac{\lambda^k e^{-\lambda}}{k!}
\]