Theory of Expectation¶
Expectation is the "center of mass" or weighted average of the probability distribution. If \(\mathbf{X}\) is a discrete random variable with probability \(P(x)\), then the expectation is denoted by \(E[\mathbf{X}]\). To compute the expectation of \(E[\mathbf{X}]\), it is defined as:
- Discrete: \(E[\mathbf{X}] = \sum_{\text{all }k} x_k P(\mathbf{X} = x_k) = \mu\)
- Continuous: \(E[\mathbf{X}] = \int_{-\infty}^{\infty} x f(x) \, dx\)
Properties of Expectation¶
- \(E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})\)
- If \(\mathbf{X}\) and \(\mathbf{Y}\) are independent, then \(E(\mathbf{X}\mathbf{Y}) = E(\mathbf{X}) E(\mathbf{Y})\)
-
The expectation of a function of a random variable \(\mathbf{Y} = g(\mathbf{X})\) is:
\[ \begin{aligned} E(\mathbf{Y}) = E(g(\mathbf{X})) &= \sum_x g(x) P(x), \quad \text{if discrete random variable} \\ E(\mathbf{Y}) = E(g(\mathbf{X})) &= \int_{-\infty}^{\infty} g(x) f(x) \, dx, \quad \text{if continuous random variable} \\ E(g(\mathbf{X}) h(\mathbf{Y})) &= E(g(\mathbf{X})) E(h(\mathbf{Y})) \end{aligned} \]