Markov's Inequality¶
Markov's inequality is used to check if \(\mathbf{X}\) is a non-negative random variable. If $\mathbf{X} \geq 0 ), then:
\[
P(\mathbf{X} \geq a) \leq \frac{E(\mathbf{X})}{a}
\]
Let \(\mathbf{X}\) be any positive discrete random variable, so we can write:
\[
\begin{aligned}
E(\mathbf{X}) &= \sum_x x P(\mathbf{X} = x) \\
&\geq \sum_{x \geq a} x P(\mathbf{X} = x) \\
&\geq \sum_{x \geq a} a P(\mathbf{X} = x) \\
&= a P(\mathbf{X} \geq a)
\end{aligned}
\]
Thus, Markov's inequality gives us the result:
\[
P(\mathbf{X} \geq a) \leq \frac{E(\mathbf{X})}{a}
\]