Skip to content

Moment Generating Function

The moment generating function (MGF), denoted as \(m(t)\), provides insight into the characteristics of a distribution and has a similar form to a Taylor series. It captures the distribution's properties up to the \(n\)-order. The MGF uniquely determines the cumulative distribution function (CDF) of a random variable \(\mathbf{X}\). For a random variable \(\mathbf{X}\), the MGF is given by:

\[ m(t) = \begin{cases} \sum_x e^{tx} P(\mathbf{X}=x), &\mathbf{X} \text{ discrete}\\ \\ \underbrace{\int_{-\infty}^\infty e^{tx} f(x) \; dx}_{\text{Laplace T-form of PDF}}, &\mathbf{X} \text{ continous} \end{cases} \]

Moments of a Distribution

The \(n\)-th moment of a distribution can be derived from the derivatives of the MGF evaluated at \(t=0\):

\[ \begin{matrix} n-\text{order} & \text{Moment} & \text{Expression}\\ 1-\text{st} & \text{Mean} & E(\mathbf{X})=\mu\\ 2-\text{nd} & \text{Variance} & E[(\mathbf{X}-\mu)^2]=\sigma^2\\ 3-\text{th} & \text{Skweness} & E\left[\left(\frac{\mathbf{X}-\mu}{\sigma}\right)^3\right]\\ 4-\text{th} & \text{Kurtosis} & E\left[\left(\frac{\mathbf{X}-\mu}{\sigma}\right)^4\right] = \frac{E(\mathbf{X}^4)}{\sigma}\\ \vdots & \vdots & \vdots \\ n-th & \text{"n-th moments"} & E(\mathbf{X}^n) \end{matrix} \]

Properties of the Moment Generating Function

Let \(\mathbf{X}\) and \(\mathbf{X}\) be independent random variables, and corresponding moment generating functions \(m_\mathbf{X}\) and \(m_\mathbf{Y}\).

Define \(\mathbf{Z} = \mathbf{X} +\mathbf{Y}\), then

\[ m_\mathbf{z}(t) = m_\mathbf{X}(t) m_\mathbf{Y}(t) \]

Proof with aim \(m_\mathbf{Z}(t) = m_\mathbf{X}(t) + \mathbf{Y}(t)\),

\[ \begin{align*} m_\mathbf{z}(t) &= E(e^{t\mathbf{Z}})=E(E^{t(\mathbf{X}+\mathbf{y})})\\ &= E(e^{t\mathbf{X}})e^{t\mathbf{Y}}\\ &= E(e^{t\mathbf{X}})E(e^{t\mathbf{Y}})\\ &= m_\mathbf{X}(t) m_\mathbf{Y}(t) \end{align*} \]

Example :

The probability mass function (PMF) of a random variable \(\mathbf{X}\sim \text{Poisson}(\lambda)\) with discrete random variable \(\mathbf{X}\),

\[ P(\mathbf{X}=x) = \frac{\lambda^xe^{-\lambda}}{x!} \]

then, the \(m(t)\) is :

\[ \begin{align*} m(t)&=\sum_x e^{tx}\frac{\lambda^xe^{-\lambda}}{x!}\\ &=e^{-\lambda} \sum_x \frac{(e^t\lambda)^x}{x!}\\ &= e^{-\lambda}e^{\lambda e^t}\\ &= e^{\lambda\left(e^t-1\right)}\\ \end{align*} \]

Compute \(E(\mathbf{X}), E(\mathbf{X}^2),\cdots ,E(\mathbf{X}^n)\) by take differentiating \(m(t)\),

\[ \begin{align*} m(t) &= e^{\lambda\left(e^t-1\right)} \\ m'(t)&= e^{\lambda\left(e^t-1\right)} \cdot \lambda e^t\\ m''(t)&= e^{\lambda\left(e^t-1\right)} (\lambda e^t)^2 + e^{\lambda\left(e^t-1\right)} (\lambda e^t) \end{align*} \]

To calculate \(E(\mathbf{X}^n)\), set \(t=0\) in the \(n\)-th derivative of \(m(t)\),

\[ \begin{align*} E(\mathbf{X}) &= m'(0) = \lambda \\ E(\mathbf{X}^2) &= m''(0) = \lambda^2 + \lambda \\ \end{align*} \]

The variance is given by:

\[ \begin{align*} \text{Var}(\mathbf{X}) &= E(\mathbf{X}^2) - (E(\mathbf{X}))^2\\ &= \lambda^2 + \lambda - \lambda\\ &= \lambda \end{align*} \]

Proof

Proof Goals : aim to show \(E(\mathbf{X}^n) = \frac{d^n}{d^nt}m(t)\)

For continuous random variables, the moment generating function is:

\[ \begin{align*} m(t) &= \int_{-\infty}^\infty e^{tx} f(x) \; dx \\ \end{align*} \]

The derivatives of of \(m(t)\) are :

\[ \begin{align*} m'(t) &= \int_{-\infty}^\infty x e^{tx} f(x) \; dx \\ m''(t) &= \int_{-\infty}^\infty x^2 e^{tx} f(x) \; dx \\ \vdots & \quad \quad \quad \quad \vdots \\ \frac{d^n}{d^nt}m(t) &= \int_{-\infty}^\infty x^n e^{tx} f(x) \; dx \end{align*} \]

Substituting \(t=0\) into these derivatives, we get the moments:

\[ \begin{align*} m'(0) &= \int_{-\infty}^\infty x f(x) \; dx = E(\mathbf{X})\\ m''(0) &= \int_{-\infty}^\infty x^2 f(x) \; dx = E(\mathbf{X}^2)\\ \vdots & \quad \quad \quad \quad \quad \vdots \\ \frac{d^n}{d^nt}m(0) &= \int_{-\infty}^\infty x^n f(x) \; dx = E(\mathbf{X}^n) \end{align*} \]

This concludes the proof for the moments of a continuous random variable.