Skip to content

Tail Sum

If \(\mathbf{X}\) is a non-negative random variable, then:

  • For discrete:

    \[ E(\mathbf{X}) = \sum_{k=1}^n P(\mathbf{X}=k) \]
  • For continuous:

    \[ E(\mathbf{X}) = \int_0^{\infty} P(\mathbf{X}>k) \, dt \]

Example :

\[ E(\mathbf{X}) = \sum_{k=1}^n P(\mathbf{X}=k) = \sum_{k=0}^n k P(\mathbf{X}=k) \]
\[ \begin{matrix} P(\mathbf{X} \ge 1) & P_1 + P_2 + P_3 + \cdots + P_{n-1} + P_n \\ P(\mathbf{X} \ge 2) & \quad + P_2 + P_3 + \cdots + P_{n-1} + P_n \\ P(\mathbf{X} \ge 3) & \quad \quad + P_3 + \cdots + P_{n-1} + P_n \\ \vdots & \vdots \\ P(\mathbf{X} \ge n-1) & \quad \quad \quad \quad + P_{n-1} + P_n \\ P(\mathbf{X} \ge n) & \quad \quad \quad \quad \quad + P_n \\ \end{matrix} \]
\[ P(\mathbf{X} \ge k) = 1 - P(\mathbf{X} \leq k) \]