Variance and Standard Deviation
The mean \(\mu\) is defined as the center of mass of the distribution, the variance \(\sigma^2\) is the average of squared differences from the mean \(\mu\), and the standard deviation \(\sigma\) tells us how spread out the distribution is.
If we apply a function \(g(\cdot)\) to \(\mathbf{X}\), with \(g(\mathbf{X}) = \mathbf{X}^2\), then:
\[
\begin{aligned}
\mathbf{Y} &= \mathbf{X}^2 \\
E(\mathbf{Y}) &= \int_{-\infty}^{\infty} x^2 f(x) \, dx
\end{aligned}
\]
If \(\mathbf{X}\) and \(\mathbf{Y}\) are independent, then:
\[
\text{Var}(\mathbf{X} + \mathbf{Y}) = \text{Var}(\mathbf{X}) + \text{Var}(\mathbf{Y})
\]
Let the random variable \(\mathbf{X}\) follow a normal distribution:
\[
\mathbf{X} \sim \mathcal{N}(\mu, \sigma^2)
\]
Then, the PDF of the normal distribution is:
\[
f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x - \mu)^2}{2 \sigma^2}}
\]
where \(\mu\) is \(E(\mathbf{X})\) and \(\sigma^2\) is the variance of \(\mathbf{X}\).
To compute \(\text{Var}(\mathbf{X})\), we have:
\[
\begin{aligned}
\text{Var}(\mathbf{X}) &= E((\mathbf{X} - \mu)^2) \\
&= E(\mathbf{X}^2) - [E(\mathbf{X})]^2
\end{aligned}
\]
Proof:
\[
\begin{aligned}
\text{Var}(\mathbf{X}) &= E((\mathbf{X} - \mu)^2) \\
&= E(\mathbf{X}^2 - 2\mu \mathbf{X} + \mu^2) \\
&= E(\mathbf{X}^2) - E(2\mu \mathbf{X}) + E(\mu^2) \\
&= E(\mathbf{X}^2) - 2\mu E(\mathbf{X}) + \mu^2 \\
&= E(\mathbf{X}^2) - \mu^2
\end{aligned}
\]
Example:
Given \(T \sim \text{Exp}(\lambda)\), where the PDF is \(f(t) = \lambda e^{-\lambda t}\), the mean is:
\[
\begin{aligned}
E(T) &= \int_0^\infty t f(t) \, dt \\
&= \int_0^\infty t \lambda e^{-\lambda t} \, dt \\
&= \left[ -t e^{-\lambda t} \right]_0^\infty + \int_0^\infty e^{-\lambda t} \, dt \\
&= 0 - \frac{1}{\lambda} \left[ e^{-\lambda t} \right]_0^\infty \\
&= \frac{1}{\lambda}
\end{aligned}
\]
Variance:
\[
\begin{aligned}
\text{Var}(T) &= E(T^2) - [E(T)]^2
\end{aligned}
\]
To compute \(E(T^2)\), we have:
\[
\begin{aligned}
E(T^2) &= \int_0^\infty t^2 \lambda e^{-\lambda t} \, dt \\
&= \frac{2}{\lambda^2}
\end{aligned}
\]
Then:
\[
\begin{aligned}
\text{Var}(T) &= \frac{2}{\lambda^2} - \frac{1}{\lambda^2} \\
&= \frac{1}{\lambda^2}
\end{aligned}
\]
Standard Deviation:
\[
\sigma(T) = \sqrt{\frac{1}{\lambda^2}} = \frac{1}{\lambda}
\]
Median:
\[
\begin{aligned}
F(t) &= \int_0^t f(t) \, dt \\
&= 1 - e^{-\lambda t} = \frac{1}{2}
\end{aligned}
\]
Then, we solve \(e^{-\lambda t} = \frac{1}{2}\), which gives:
\[
t = \frac{\ln(2)}{\lambda}
\]
Thus, the median is:
\[
\text{Median}(T) = \frac{\ln(2)}{\lambda}
\]